Learning Unit	Code	Objectives
Students can:		
1. Basic computation	KS3-NA01-1 KS3-NA01-2 KS3-NA01-3 KS3-NA01-4	use powers to express the repeated multiplication of a number and use repeated multiplication to express the power of a number. perform prime factorisation of a positive integer, which is less than 200 and its prime factors are less than 100. find the greatest common divisor and the least common multiple of two or three numbers which are expressed as products of prime factors. perform mixed arithmetic operations of positive integers involving two levels and at most three pairs of brackets.
2. Directed numbers	KS3-NA02-1 KS3-NA02-2 KS3-NA02-3	demonstrate recognition of the ordering of integers on the number line. use positive numbers, negative numbers and zero to describe situations such as profit and loss, floor levels relative to the ground level, temperature, etc. perform mixed arithmetic operations of directed numbers (with at most three operations in each expression).
3. Approximate values and numerical estimation	KS3-NA03-1 KS3-NA03-2	round off a number to a certain number of (a) decimal places (at most 3 decimal places); (b) significant figures (at most 3 significant figures). use suitable estimation strategies to solve simple real-life problems.

Learning Unit	Code	Objectives
Students can:		
4. Rational and irrational numbers	KS3-NA04-1 KS3-NA04-2 KS3-NA04-3	calculate the value of x in the expressions $\sqrt{x}=a$, $\sqrt[3]{x}=a, \quad \sqrt{a}=x \quad$ and $\sqrt[3]{a}=x$, where a is a positive integer. demonstrate recognition of the concepts of rational and irrational numbers. represent rational and irrational numbers on the number line.
5. Using percentages	KS3-NA05-1 KS3-NA05-2 KS3-NA05-3 KS3-NA05-4 KS3-NA05-5	solve problems on percentage increase, percentage decrease and percentage change in mathematical context. solve simple problems on discount and profit or loss. solve problems on simple interest. solve simple problems on compound interest, compounded yearly (confined to calculations for at most 3 years; excluding problems to find the number of years and the interest rate). solve simple problems on growths and depreciations (confined to calculations of new values for at most 3 repeated growths/depreciations).
6. Rates, ratios and proportions	KS3-NA06-1 KS3-NA06-2 KS3-NA06-3 KS3-NA06-4	distinguish direct and inverse proportions. represent a ratio in the form $a: b$ (or $\frac{a}{b}$), $a: b: c$. use rate and ratio to solve simple real-life problems. use direct and inverse proportions to solve simple reallife problems (confined to two variables).

Learning Unit	Code	Objectives
Students can:		
7. Algebraic expressions	KS3-NA07-1	demonstrate recognition of notations of algebraic expressions such as $2 x, 2+x, x^{2},(-2)^{n}$ and -2^{n}, etc.
	KS3-NA07-2	KS3-NA07-3
formulate algebraic expressions from word phrases.		
write down the next term of a sequence of odd numbers,		
even numbers, square numbers and triangular numbers		
with several consecutive terms given.		
KS3-NA07-4	find a particular term from the general term of a sequence.	
8. Linear equations in one		
unknown	KS3-NA08-1	solve simple linear equations in one unknown (with integral and fractional coefficients and constants). demonstrate understanding of the meaning of solutions of equations.
KS3-NA08-2		
formulate a linear equation in one unknown from a		
simple problem situation.		

Learning Unit	Code	Objectives
Students can:		
9. Linear equations in two unknowns	KS3-NA09-1 KS3-NA09-2 KS3-NA09-3 KS3-NA09-4 KS3-NA09-5 KS3-NA09-6	plot graphs of linear equations in two unknowns. demonstrate recognition that graphs of equations of the form $a x+b y+c=0$ are straight lines. determine whether a point lies on a straight line given its linear equation. solve simple simultaneous linear equations in two unknowns (with integral coefficients and constants) which have a unique solution by the graphical method. solve simple simultaneous linear equations in two unknowns (with integral coefficients and constants) which have a unique solution by algebraic methods. formulate simultaneous linear equations in two unknowns from a simple problem situation.
10. Laws of integral indices	KS3-NA10-1 KS3-NA10-2 KS3-NA10-3 KS3-NA10-4	find the value of a^{n}, where $a(a \neq 0)$ is an integer and n is zero or a negative integer. use the laws of integral indices to simplify simple algebraic expressions (up to 2 variables and applying integral index laws for at most 2 times). represent a positive number in scientific notations. convert a positive number in scientific notations to an integer or a decimal.

Learning Unit	Code	Objectives
Students can:		
11. Polynomials	KS3-NA11-1 KS3-NA11-2 KS3-NA11-3 KS3-NA11-4 KS3-NA11-5 KS3-NA11-6 KS3-NA11-7 KS3-NA11-8 KS3-NA11-9	distinguish polynomials from algebraic expressions. demonstrate recognition of terms, monomials, binomials, orders, powers, constant terms, like terms, unlike terms and coefficients. arrange the terms of a polynomial in ascending order or descending order. perform addition or subtraction of two polynomials (of at most 4 terms), in which the terms involved contain at most two variables. perform multiplication of a monomial by a binomial or a trinomial, in which the terms involved contain at most two variables. perform multiplication of two binomials, in which the terms involved contain at most two variables. distinguish factorisation and expansion of polynomials. factorise simple polynomials of not more than 4 terms by taking out common factors and/or grouping terms. factorise expressions of the form $a x^{2}+b x+c$, where a, b, c are integers, $1 \leq a \leq 3$ and $-20 \leq c \leq 20$.
12. Identities	KS3-NA12-1 KS3-NA12-2 KS3-NA12-3	indicate whether an equation is an identity. use the identities of difference of two squares and perfect square once to expand simple algebraic expressions. use the identities of difference of two squares and perfect square once to factorise simple polynomials.

Learning Unit	Code	Objectives
13. Formulae	Students can:	
	KS3-NA13-1	perform operations of two algebraic fractions, both the numerators and denominators being monomials, such as $\frac{1}{x}, \frac{3 x}{2 y}$, etc.
KS3-NA13-2	substitute values into formulae (in which all exponents are positive integers) and find the value of a specified variable.	
Kinear inequalities in	KS3-NA14-1	perform change of subject in simple formulae not involving radical sign.
determine whether a number satisfies a given inequality		
of $x>a, x \geq a, x<a$ and $x \leq a$.		

Measures, Shape and Space Strand

Learning Unit	Code	Objectives
Students can:		
15. Errors in measurement	KS3-MSS15-1	find maximum absolute errors when using given measuring tools for measurement.
KS3-MSS15-2	KS3-MSS15-3	find the range of measures in measurements of given degrees of accuracy. calculate relative errors and percentage errors from given measurements.
16. Arc lengths and areas of	KS3-MSS16-1	KS3-MSS16-2
calculate arc lengths.		
calculate areas of sectors.		
KS3-MSS17-1 figures	demonstrate recognition of the concepts of right prisms, right circular cylinders, right pyramids and right circular cones.	
KS3-MSS17-2	demonstrate recognition of the sections of prisms,	
circular cylinders, pyramids and circular cones.		
KS3-MSS17-3	sketch the 2-D representations of right prisms, right circular cylinders, right pyramids and right circular cones.	

Learning Unit	Code	Objectives
Students can:		
18. Mensuration	KS3-MSS18-1 KS3-MSS18-2 KS3-MSS18-3 KS3-MSS18-4 KS3-MSS18-5	calculate the volumes of prisms, circular cylinders, pyramids, circular cones and spheres. calculate the surface areas of right prisms, right circular cylinders, right pyramids, right circular cones and spheres. use the relationships between sides and surface areas/volumes of similar 3-D figures to solve problems (calculations related to frusta are not included). use the formulae for the volumes of prisms and circular cylinders to find unknowns. use the formulae for the surface areas of right prisms and right circular cylinders to find unknowns.
19. Angles and parallel lines	KS3-MSS19-1 KS3-MSS19-2 KS3-MSS19-3 KS3-MSS19-4 KS3-MSS19-5	use the properties of adjacent angles on a straight line, vertically opposite angles, and angles at a point to find unknowns. identify corresponding angles, alternate interior angles and interior angles. use the conditions of alternate interior angles are equal, corresponding angles are equal, and interior angles are supplementary to perform simple proof of two straight lines being parallel. use the angle properties associated with parallel lines to find unknowns. use the properties of angles of triangles to find unknowns.

Learning Unit	Code	Objectives
Students can:		
20. Polygons	KS3-MSS20-1 KS3-MSS20-2 KS3-MSS20-3 KS3-MSS20-4	use common notations to represent polygons. demonstrate recognition of the concepts of polygons and regular polygons. use the formula for the sum of the interior angles of a convex polygon to find unknowns. use the formula for the sum of the exterior angles of a convex polygon to find unknowns.
21. Congruent triangles	KS3-MSS21-1 KS3-MSS21-2 KS3-MSS21-3 KS3-MSS21-4 KS3-MSS21-5	demonstrate recognition of the properties of congruent triangles. demonstrate recognition of the conditions for congruent triangles. use the conditions for congruent triangles to perform simple proofs. use the relations between sides and angles associated with isosceles triangles to find unknowns. use the condition for isosceles triangles to perform simple proofs.
22. Similar triangles	KS3-MSS22-1 KS3-MSS22-2 KS3-MSS22-3	demonstrate recognition of the properties of similar triangles. demonstrate recognition of the conditions for similar triangles. use the conditions for similar triangles to perform simple proofs.

Learning Unit	Code	Objectives
	Students can:	
23. Quadrilaterals	KS3-MSS23-1	use the properties of parallelograms to find unknowns.
KS3-MSS23-2	use the properties of rectangles, rhombuses and squares to find unknowns.	
24. Centres of triangles	KS3-MSS24-1	identify medians, perpendicular bisectors, altitudes and angle bisectors of a triangle.
25. Pythagoras' theorem	KS3-MSS25-1	KS3-MSS25-2
26. Rectangular coordinate	KSythagoras' theorem to find unknowns.	
use the converse of Pythagoras' theorem to identify		
right-angled triangles.		

Learning Unit	Code	Objectives
27. Trigonometry	Ktudents can:	
	KS3-MSS27-1	find the sine, cosine and tangent of angles between 0° to 90° and vice versa. KS3-MSS27-3 solve right-angled triangles. demonstrate recognition of the concepts of gradients, angles of elevation, angles of depression and bearings.
	KS3-MSS27-4	solve simple problems involving one right-angled triangle.

Remarks:

Students are not required to state geometric reasons for numerical problems. However, they are expected to give acceptable reasons in geometric proofs.

Data Handling Strand

Learning Unit	Code	Objectives
28. Organisation of data	KS3-DH28-1	organise the same set of data by different grouping methods.
29. Presentation of data	KS3-DH29-1	construct stem-and-leaf diagrams and histograms.
KS3-DH29-2	interpret stem-and-leaf diagrams and histograms.	
KS3-DH29-3	read off data from statistical charts representing two different sets of data. KS3-DH29-4 construct frequency polygons, frequency curves, cumulative frequency polygons and cumulative frequency curves. KS3-DH29-5 interpret frequency polygons, frequency curves, cumulative frequency polygons and cumulative frequency curves. Khoose appropriate statistical charts to present data.	
KS3-DH29-7	indicate the abuses from examples of abuses of statistical	
charts.		

Learning Unit	Code	Objectives
30. Measures of central tendency	KS3-DH30-1	find mean, median and mode from a set of ungrouped data. KS3-DH30-2 find median (from cumulative frequency polygons/curves only), mean and modal class from a set of grouped data.
	KS3-DH30-3	indicate the abuses from examples of abuses of mean, median and mode/modal class.
	KS3-DH30-4	calculate the weighted mean of a set of data.
KS3-DH31-1	calculate the relative frequency.	
KS3-DH31-2	calculate the probability by listing.	

